Intermodulation electrostatic force microscopy for imaging surface photo-voltage
نویسندگان
چکیده
منابع مشابه
Phase imaging with intermodulation atomic force microscopy.
Intermodulation atomic force microscopy (IMAFM) is a dynamic mode of atomic force microscopy (AFM) with two-tone excitation. The oscillating AFM cantilever in close proximity to a surface experiences the nonlinear tip-sample force which mixes the drive tones and generates new frequency components in the cantilever response known as intermodulation products (IMPs). We present a procedure for ext...
متن کاملIntermodulation atomic force microscopy
A mode of atomic force microscopy AFM is demonstrated where an oscillating AFM cantilever having linear response is driven with two frequencies in the vicinity of a resonance. New frequencies in the response, known as intermodulation products, are generated when the linearity of the cantilever response is perturbed by the nonlinear tip-surface interaction. A rich structure of the intermodulatio...
متن کاملElectrostatic-free piezoresponse force microscopy
Contact and non-contact based atomic force microscopy (AFM) approaches have been extensively utilized to explore various nanoscale surface properties. In most AFM-based measurements, a concurrent electrostatic effect between the AFM tip/cantilever and sample surface can occur. This electrostatic effect often hinders accurate measurements. Thus, it is very important to quantify as well as remove...
متن کاملInterpreting motion and force for narrow-band intermodulation atomic force microscopy
Intermodulation atomic force microscopy (ImAFM) is a mode of dynamic atomic force microscopy that probes the nonlinear tip-surface force by measurement of the mixing of multiple modes in a frequency comb. A high-quality factor cantilever resonance and a suitable drive comb will result in tip motion described by a narrow-band frequency comb. We show, by a separation of time scales, that such mot...
متن کاملDynamic electrostatic force microscopy in liquid media
We present the implementation of dynamic electrostatic force microscopy in liquid media. This implementation enables the quantitative imaging of local dielectric properties of materials in electrolyte solutions with nanoscale spatial resolution. Local imaging capabilities are obtained by probing the frequency-dependent and ionic concentration-dependent electrostatic forces at high frequency (>1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2014
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.4897966